Immobilizing photogenerated electrons from graphitic carbon nitride for an improved visible-light photocatalytic activity

نویسندگان

  • Han Sun
  • Yue Cao
  • Leiyu Feng
  • Yinguang Chen
چکیده

Reducing the recombination probability of photogenerated electrons and holes is pivotal in enhancing the photocatalytic ability of graphitic carbon nitride (g-C3N4). Speeding the departure of photogenerated electrons is the most commonly used method of achieving this. To the best of our knowledge, there is no report on suppressing the recombination of photogenerated electron-hole pairs by immobilizing the electrons with ester functional groups. Here, for the first time the mesoporous g-C3N4 (mpg-C3N4) was integrated with polymethyl methacrylate, a polymer abundant in ester groups, which showed a photocatalytic activity unexpectedly higher than that of the original mpg-C3N4 under visible-light irradiation. Experimental observations, along with theoretical calculations, clarified that the impressive photocatalytic ability of the as-modified mpg-C3N4 was mainly derived from the immobilization of photogenerated electrons via an electron-gripping effect imposed by the ester groups in the polymethyl methacrylate. This novel strategy might also be applied in improving the photocatalytic performance of other semiconductors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Graphitic Carbon Nitride/Reduced Graphene Oxide/Silver Oxide Nanostructures with Enhanced Photocatalytic Activity in Visible Light

Visible light active graphitic carbon nitride/reduced graphene oxide/silver oxide nanocomposites with a p-n heterojunction structure were synthesized by chemical deposition methods. Prepared samples were characterized by different physico-chemical technics such as XRD, FTIR, SEM, TEM and DRS. Photocatalytic activity investigated by analyzing the Acid blue 92 (AB92) concentration during the time...

متن کامل

A facile method of activating graphitic carbon nitride for enhanced photocatalytic activity.

Activated graphitic carbon nitride (g-C3N4) with enhanced photocatalytic capability under visible light irradiation was fabricated by using a facile chemical activation treatment method. In the chemical activation, a mixed solution of hydrogen peroxide and ammonia was employed. The yield can reach as high as 90% after the activation process. The activation process did not change the crystal str...

متن کامل

Heterojunction engineering of graphitic carbon nitride (g-C3N4) via Pt loading with improved daylight-induced photocatalytic reduction of carbon dioxide to methane.

In this paper, noble-metal Pt nanoparticles of around 2.5 nm were deposited on graphitic carbon nitride (g-C3N4) synthesized by a chemical reduction process in ethylene glycol. Compared with pure g-C3N4, the resulting Pt-loaded g-C3N4 (Pt/CN) exhibited a considerable improvement in the photoreduction of CO2 to CH4 in the presence of water vapor at ambient temperature and atmospheric pressure un...

متن کامل

Band gap-tunable potassium doped graphitic carbon nitride with enhanced mineralization ability.

Band gap-tunable potassium doped graphitic carbon nitride with enhanced mineralization ability was prepared using dicyandiamide monomer and potassium hydrate as precursors. X-ray diffraction (XRD), N2 adsorption, UV-Vis spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), photoluminescence (PL) and X-ray photoelectron spectroscopy (XPS) were used to...

متن کامل

Excellent graphitic carbon nitride nanosheets-based photoelectrochemical platform motivated by Schottky barrier and LSPR effect and its sensing application.

A visible light responsive photocatalytic hybrid with excellent photoelectrochemical activity was first fabricated via the self-assembly of Au nanorods onto poly(l-cysteine) modified graphitic carbon nitride nanosheets. Herein, layered structural graphitic carbon nitride nanosheets with a proper band gap, high stability, and nontoxicity, as a photoactive material, demonstrate a high photocataly...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016